Heavy Rainfall Monitoring by Polarimetric C-Band Weather Radars
نویسندگان
چکیده
Piemonte region, in the north-western Italy, is characterized by complex orography and Mediterranean influence that often causes extreme rainfall event, during the warm season. Although the region is monitored by a dense gauge network (more than one gauge per 100 km 2 ), the ground measurements are often inadequate to properly observe intense and highly variable precipitations. Polarimetric weather radars provide a unique way to monitor rainfall over wide areas, with the required spatial detail and temporal resolution. Nevertheless, most European weather radar networks are operating at C-band, which may seriously limit quantitative precipitation estimation in heavy rainfall due to relevant power signal attenuation. Phase measurements, unlike power measurements, are not affected by signal attenuation. For this reason, polarimetric radars, for which the differential phase shift measurements are available, provide an additional way in which to estimate precipitation, which is immune to signal attenuation. In this work differential phase based rainfall estimation techniques are applied to analyze two flash-floods: the first one occurred on the Ligurian Apennines on 16 August 2006 and the second occurred on 13 September 2008, causing rain accumulations above 270 mm in few hours.
منابع مشابه
Rainfall retrieval from polarimetric X-band radar measurements
Dual polarization radars have shown considerable improvement of quantitative estimation of rainfall rate and raindrop size distribution (DSD) parameters. Most studies have been done with S and C-band radars and only a few studies with higher X-band weather radars. X-band radars have the advantages of lower cost and higher differential phase shift but with higher attenuation too. Furthermore, th...
متن کاملRainfall rate retrieval in presence of path attenuation using C-band polarimetric weather radars
Weather radar systems are very suitable tools for the monitoring of extreme rainfall events providing measurements with high spatial and temporal resolution over a wide geographical area. Nevertheless, radar rainfall retrieval at C-band is prone to several error sources, such as rain path attenuation which affects the accuracy of inversion algorithms. In this paper, the so-called rain profiling...
متن کاملDrop Shape and Dsd Retrieval with an X-band Dual Polarization Radar
There is a renewed interest in the use of X-band weather radars, due to specific advantages such as applications to rainfall estimation in light rain, monitoring of sensitive areas that are inadequately covered by operational radar networks as well as the radar network concept introduced by the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) (Chandrasekar et al. 2004). The us...
متن کاملRainfall Profiling Using Atmospheric Radiation Measurement Program Vertically Pointing 8-mm Wavelength Radars
An attenuation-based method to retrieve vertical profiles of rainfall rate from vertically pointing Ka-band radar measurements has been refined and adjusted for use with the U.S. Department of Energy’s cloud radars deployed at multiple Atmospheric Radiation Program (ARM) test bed sites. This method takes advantage of the linear relationship between the rainfall rate and the attenuation coeffici...
متن کاملBird Migration Echoes Observed by Polarimetric Radar
Weather surveillance radars observe clear-air radar echoes (CAE); aerial biota and irregularities in atmospheric refractive index caused the echoes. Using weak returns of atmospheric CAE, the radars have been applied to wind findings in a short radar range in a fair weather, in particular S-band radars. Long wavelength radars perform good to observe air motion, because a detectable turbulent sc...
متن کامل